Light Influences How the Fungal Toxin Deoxynivalenol Affects Plant Cell Death and Defense Responses
نویسندگان
چکیده
The Fusarium mycotoxin deoxynivalenol (DON) can cause cell death in wheat (Triticum aestivum), but can also reduce the level of cell death caused by heat shock in Arabidopsis (Arabidopsis thaliana) cell cultures. We show that 10 μg mL(-1) DON does not cause cell death in Arabidopsis cell cultures, and its ability to retard heat-induced cell death is light dependent. Under dark conditions, it actually promoted heat-induced cell death. Wheat cultivars differ in their ability to resist this toxin, and we investigated if the ability of wheat to mount defense responses was light dependent. We found no evidence that light affected the transcription of defense genes in DON-treated roots of seedlings of two wheat cultivars, namely cultivar CM82036 that is resistant to DON-induced bleaching of spikelet tissue and cultivar Remus that is not. However, DON treatment of roots led to genotype-dependent and light-enhanced defense transcript accumulation in coleoptiles. Wheat transcripts encoding a phenylalanine ammonia lyase (PAL) gene (previously associated with Fusarium resistance), non-expressor of pathogenesis-related genes-1 (NPR1) and a class III plant peroxidase (POX) were DON-upregulated in coleoptiles of wheat cultivar CM82036 but not of cultivar Remus, and DON-upregulation of these transcripts in cultivar CM82036 was light enhanced. Light and genotype-dependent differences in the DON/DON derivative content of coleoptiles were also observed. These results, coupled with previous findings regarding the effect of DON on plants, show that light either directly or indirectly influences the plant defense responses to DON.
منابع مشابه
The Fusarium mycotoxin deoxynivalenol elicits hydrogen peroxide production, programmed cell death and defence responses in wheat.
Fusarium species infect cereal crops worldwide and cause the important diseases Fusarium head blight and crown rot in wheat. Fusarium pathogens reduce yield and some species also produce trichothecene mycotoxins, such as deoxynivalenol (DON), during infection. These toxins play roles in pathogenesis on wheat and have serious health effects if present in grain consumed by humans or animals. In t...
متن کاملSecondary metabolites in fungus-plant interactions
Fungi and plants are rich sources of thousands of secondary metabolites. The genetically coded possibilities for secondary metabolite production, the stimuli of the production, and the special phytotoxins basically determine the microscopic fungi-host plant interactions and the pathogenic lifestyle of fungi. The review introduces plant secondary metabolites usually with antifungal effect as wel...
متن کاملStudy of the properties of Deoxynivalenol (DON) production in culture medium regarding to Aspergillus spp. isolates from processing factories in Northern Iran
According to the increased fungi contaminations and related damages, microbiologist's incentive in considering the fungal contaminations in human habitats had increased. Some of fungi cause disease through production of toxins in animals as well as humans. Since these toxins are not easily distinguishable, then it is crucial to study their characteristics. Aspergillus are among the most importa...
متن کاملSecondary metabolite toxins and nutrition of plant pathogenic fungi.
Fungal pathogens derive nutrition from the plants they invade. Some fungi can subvert plant defence responses such as programmed cell death to provide nutrition for their growth and colonisation. Secondary metabolite toxins produced by fungi often play a role in triggering these responses. Knowledge of the biosynthesis of these toxins, and the availability of fungal genome sequences and gene di...
متن کاملCholic acid, a bile acid elicitor of hypersensitive cell death, pathogenesis-related protein synthesis, and phytoalexin accumulation in rice.
When plants interact with certain pathogens, they protect themselves by generating various defense responses. These defense responses are induced by molecules called elicitors. Since long ago, composts fermented by animal feces have been used as a fertilizer in plant cultivation, and recently, have been known to provide suppression of plant disease. Therefore, we hypothesized that the compounds...
متن کامل